Unraveling the photocatalytic mechanisms on TiO2 surfaces using the oxygen-18 isotopic label technique.

نویسندگان

  • Xibin Pang
  • Chuncheng Chen
  • Hongwei Ji
  • Yanke Che
  • Wanhong Ma
  • Jincai Zhao
چکیده

During the last several decades TiO2 photocatalytic oxidation using the molecular oxygen in air has emerged as a promising method for the degradation of recalcitrant organic pollutants and selective transformations of valuable organic chemicals. Despite extensive studies, the mechanisms of these photocatalytic reactions are still poorly understood due to their complexity. In this review, we will highlight how the oxygen-18 isotope labeling technique can be a powerful tool to elucidate complicated photocatalytic mechanisms taking place on the TiO2 surface. To this end, the application of the oxygen-18 isotopic-labeling method to three representative photocatalytic reactions is discussed: (1) the photocatalytic hydroxylation of aromatics; (2) oxidative cleavage of aryl rings on the TiO2 surface; and (3) photocatalytic decarboxylation of saturated carboxylic acids. The results show that the oxygen atoms of molecular oxygen can incorporate into the corresponding products in aqueous solution in all three of these reactions, but the detailed incorporation pathways are completely different in each case. For the hydroxylation process, the O atom in O2 is shown to be incorporated through activation of O2 by conduction band electrons. In the cleavage of aryl rings, O atoms are inserted into the aryl ring through the site-dependent coordination of reactants on the TiO2 surface. A new pathway for the decarboxylation of saturated carboxylic acids with pyruvic acid as an intermediate is identified, and the O2 is incorporated into the products through the further oxidation of pyruvic acid by active species from the activation of O2 by conduction band electrons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ ATR-FTIR study of H2O and D2O adsorption on TiO2 under UV irradiation.

The adsorption of water and deuterium oxide on TiO2 surfaces was investigated in the dark as well as under UV(A) irradiation using in situ ATR-FTIR spectroscopy under oxygen and oxygen free conditions. Adsorption of H2O-D2O mixtures revealed an isotopic exchange reaction occurring onto the surface of TiO2 in the dark. Under UV(A) irradiation, the amount of both OH and OD groups was found to be ...

متن کامل

Study on Catalytic and Photocatalytic Decontamination of (2-Chloroethyl) Phenyl Sulfide with Nano-TiO2

Catalytic and photocatalytic reactions of (2-chloroethyl) phenyl sulfide (2-CEPS), a mimic of bis (2-chloroethyl)  sulfide (i.e. Sulfur mustard) were studied on the surfaces of titanium oxide. TiO2 nanoparticles (anatase, rutile and mixture of 80% anatase/20% rutile) along with bulk TiO2 were tested as reactive sorbents for reaction of 2-CEPS at room temperature (25±0.5°C). Reactions were monit...

متن کامل

Disinfection Kinetics and Contribution of Reactive Oxygen Species When Eliminating Bacteria with TiO2 Induced Photocatalysis

Titania (TiO2) induced photocatalysis has been widely investigated and applied as a disinfection strategy in many industrial and clinical applications. Reactive oxygen species (ROS), including hydroxyl radicals (•OH), superoxide radicals ( − •2 O ) and hydrogen peroxide (H2O2), generated in the photocatalytic reaction process are considered to be the active components prompting the bactericidal...

متن کامل

Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy

When titanium dioxide (TiO2) is exposed to nearultraviolet light, it exhibits strong bactericidal activity. Anatase phase of TiO2 film was prepared by anodizing pure titanium coupons (substrate). Atomic force microscopy (AFM) technique was used to image the transformation of titanium surface to TiO2 surface on anodization. We observed wide distribution of TiO2 particles ranging from submicron t...

متن کامل

Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals.

Arsenic contamination has been found in the groundwater of several countries. Photocatalysis can rapidly oxidize arsenite (As(III)) to less labile and less toxic arsenate (As(V)), which then can be removed by adsorption onto photocatalyst surfaces. This study investigates the photocatalytic oxidation of As(III) to As(V) as a function of As(III) concentration, pH, catalyst loading, light intensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 10  شماره 

صفحات  -

تاریخ انتشار 2014